Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 18.924
1.
Med Oncol ; 41(6): 148, 2024 May 11.
Article En | MEDLINE | ID: mdl-38733486

Numerous herbal products have been the subject of research regarding their potential role in cancer prevention or adjuvant therapy. Pistacia atlantica and its main phytochemicals have garnered significant attention for their potential anti-cancer effects. The study aimed to assess the growth inhibitory effects of P. atlantica essential oil (PAEO) on MKN-45 and AGS cells. This study quantified the volatile compounds in PAEO using Gas Chromatography-Mass Spectrometry (GC-MS). Subsequently, MKN-45 and AGS cells were treated with varying concentrations of PAEO (5%, 2.5%, 1.25%, 0.625%, 0.3125%, 0.156%, 0.0781%, 0.0391%, 0.0195%) for 24 h. Cell viability was evaluated through the MTT assay. The impact of PAEO on gene expression was investigated by quantifying the mRNA levels of Bax and Bcl2 in the various experimental groups using quantitative Real-Time PCR (qRT-PCR) analysis. Additionally, flow cytometry was utilized to evaluate apoptosis in the treated cells. The analysis of PAEO revealed that α-pinene was the predominant monoterpene, constituting 87.9% of the oil composition. The cytotoxic effects of PAEO were evaluated, and it was found that the oil significantly reduced the viability of MKN-45 and AGS cells. The IC50 for MKN-45 cells was determined to be 1.94 × 10-3% after 24 h of treatment, while for AGS cells the IC50 was 2.8 × 10-3% after 24 h. Additionally, the research revealed that PAEO triggered a notable rise in apoptotic cells in both AGS and MKN-45 cell lines. Moreover, at the molecular level, the findings indicated an increase in Bax expression and a decrease in Bcl2 mRNA expression, providing further evidence of the induction of apoptosis in both MKN-45 and AGS cell lines following PAEO treatment. The findings of this study offer evidence supporting the cytotoxic effects of PAEO on gastric cancer cell lines by promoting apoptosis. The findings suggest that PAEO may offer potential as a therapeutic candidate in managing and treating gastric cancer.


Apoptosis , Cell Survival , Oils, Volatile , Pistacia , Stomach Neoplasms , Humans , Oils, Volatile/pharmacology , Pistacia/chemistry , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Cell Line, Tumor , Apoptosis/drug effects , Cell Survival/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , Gas Chromatography-Mass Spectrometry
2.
Mol Biol Rep ; 51(1): 603, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698270

BACKGROUND: Drug combination studies help to improve new treatment approaches for colon cancer. Tumor spheroids (3D) are better models than traditional 2-dimensional cultures (2D) to evaluate cellular responses to chemotherapy drugs. The cultivation of cancer cells in 2D and 3D cultures affects the apoptotic process, which is a major factor influencing the response of cancer cells to chemotherapeutic drugs. In this study, the antiproliferative effects of 5-fluorouracil (5-FU) and doxorubicin (DOX) were investigated separately and in combination using 2D and 3D cell culture models on two different colon cancer cell lines, HT-29 (apoptosis-resistant cells) and Caco-2 2 (apoptosis-susceptible cells). METHODS: The effect of the drugs on the proliferation of both colon cancer cells was determined by performing an MTT assay in 2D culture. The apoptotic effect of 5-FU and DOX, both as single agents and in combination, was assessed in 2D and 3D cultures through quantitative real-time polymerase chain reaction analysis. The expression of apoptotic genes, such as caspases, p53, Bax, and Bcl-2, was quantified. RESULTS: It was found that the mRNA expression of proapoptotic genes was significantly upregulated, whereas the mRNA expression of the antiapoptotic Bcl-2 gene was significantly downregulated in both colon cancer models treated with 5-FU, DOX, and 5-FU + DOX. CONCLUSION: The results indicated that the 5-FU + DOX combination therapy induces apoptosis and renders 5-FU and DOX more effective at lower concentrations compared to their alone use. This study reveals promising results in reducing the potential side effects of treatment by enabling the use of lower drug doses.


Apoptosis , Cell Proliferation , Colorectal Neoplasms , Doxorubicin , Fluorouracil , Spheroids, Cellular , Humans , Fluorouracil/pharmacology , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Doxorubicin/pharmacology , Apoptosis/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , HT29 Cells , Cell Proliferation/drug effects , Caco-2 Cells , Gene Expression Regulation, Neoplastic/drug effects , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Line, Tumor , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics
3.
Parasite Immunol ; 46(5): e13035, 2024 May.
Article En | MEDLINE | ID: mdl-38712475

Trichinella spiralis (T. spiralis) is an immunomodulating parasite that can adversely affect tumor growth and extend host lifespan. The aim of this study was to elucidate the mechanisms by which T. spiralis larval antigens achieve this effect using Ehrlich solid carcinoma (ESC) murine model. Assessment was done by histopathological and immunohistochemical analysis of caspase-3, TNF-α, Ki-67 and CD31. Additionally, Bcl2 and Bcl2-associated protein X (Bax) relative gene expression was assessed by molecular analysis for studying the effect of T. spiralis crude larval extract (CLE) antigen on tumor necrosis, apoptosis, cell proliferation and angiogenesis. We found that both T. spiralis infection and CLE caused a decrease in the areas of necrosis in ESC. Moreover, they led to increased apoptosis through activation of caspase-3, up-regulation of pro-apoptotic gene, Bax and down-regulation of anti-apoptotic gene, Bcl2. Also, T. spiralis infection and CLE diminished ESC proliferation, as evidenced by decreasing Ki-67. T. spiralis infection and CLE were able to suppress the development of ESC by inhibiting tumor proliferation, inducing apoptosis and decreasing tumor necrosis, with subsequent decrease in tumor metastasis. T. spiralis CLE antigen may be considered as a promising complementary immunotherapeutic agent in the treatment of cancer.


Carcinoma, Ehrlich Tumor , Larva , Trichinella spiralis , Animals , Trichinella spiralis/drug effects , Mice , Larva/drug effects , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Carcinoma, Ehrlich Tumor/immunology , Apoptosis/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Antigens, Helminth/immunology , Caspase 3/metabolism , bcl-2-Associated X Protein/metabolism , Ki-67 Antigen/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Tumor Necrosis Factor-alpha/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Female , Immunohistochemistry
4.
Sports Med Arthrosc Rev ; 32(1): 12-16, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38695498

Rotator cuff repair is usually successful, but retear is not uncommon. It has been previously identified that there is a higher incidence of apoptosis in the edges of the torn supraspinatus tendon. A prospective cohort study was conducted with 28 patients-14 rotator cuff tear patients, 5 instability patients, and 9 Anterior cruciate ligament reconstruction patients to determine whether there was any increase in several genes implicated in apoptosis, including Fas receptor (FasR), Fas ligand, Aifm-1, Bcl-2, Fadd, Bax, and caspase-3. There was a significant expression of Bax (P=0.2) and FasR (P=0.005) in the edges of torn supraspinatus tendons, and in intact subscapularis tendons, there was a significant expression of caspase-3 (P=0.02) compared with samples from the torn supraspinatus tendon (P=0.04). The cytochrome c pathway, with its subsequent activation of caspase-3, as well as the TRAIL-receptor signaling pathway involving FasR have both been implicated. The elevated expression of Bax supported the model that the Bax to Bcl-2 expression ratio represents a cell death switch. The elevated expression of Bax in the intact subscapularis tissue from rotator cuff tear patients also may confirm that tendinopathy is an ongoing molecular process.


Apoptosis , Rotator Cuff Injuries , Tendinopathy , Humans , Rotator Cuff Injuries/metabolism , Rotator Cuff Injuries/surgery , Rotator Cuff Injuries/pathology , Tendinopathy/pathology , Tendinopathy/metabolism , Prospective Studies , Male , bcl-2-Associated X Protein/metabolism , Female , fas Receptor/metabolism , Caspase 3/metabolism , Rotator Cuff/pathology , Rotator Cuff/metabolism , Middle Aged , Signal Transduction , Adult
5.
BMC Gastroenterol ; 24(1): 151, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698325

BACKGROUND: Acute pancreatitis (AP) is a prevalent exocrine inflammatory disorder of the pancreas characterized by pancreatic inflammation and injury to acinar cells. Vitamin B6 (VB6) is a vital nutrient that plays a significant role in preserving human health and has anti-inflammatory and anti-apoptotic effects. METHODS: This study aimed to explore the potential pancreatic protective effects of VB6 in mitigating pancreatic inflammation and apoptosis induced by taurocholate sodium (TLCS) in an AP model and to assess the underlying mechanism of action. AP was induced in Sprague‒Dawley (SD) rats through TLCS administration and lipopolysaccharide (LPS)-treated AR42J cells, followed by treatment with VB6. RESULTS: Various parameters associated with AP were assessed in both plasma and pancreatic tissues. VB6 has been shown to ameliorate the severity of AP through various mechanisms. It effectively reduces the levels of serum amylase, lipase, and inflammatory factors, thereby mitigating histological injury to the pancreas. Moreover, VB6 inhibited pancreatic apoptosis by downregulating bax expression and up-regulating Bcl2 expression in TLCS-treated rats. Additionally, VB6 suppressed the expression of caspase3. The anti-inflammatory and anti-apoptotic effects of VB6 observed in LPS-treated AR42J cells are consistent with those observed in a rat model of AP. CONCLUSIONS: These results suggest that VB6 exerts anti-inflammatory and anti-apoptotic effects through inhibition of the caspase3 signaling pathway and has a protective effect against AP.


Apoptosis , Caspase 3 , Lipopolysaccharides , Pancreatitis , Rats, Sprague-Dawley , Signal Transduction , Taurocholic Acid , Vitamin B 6 , Animals , Pancreatitis/drug therapy , Pancreatitis/metabolism , Pancreatitis/pathology , Pancreatitis/chemically induced , Signal Transduction/drug effects , Apoptosis/drug effects , Caspase 3/metabolism , Rats , Vitamin B 6/pharmacology , Vitamin B 6/therapeutic use , Male , Amylases/blood , Pancreas/pathology , Pancreas/drug effects , Pancreas/metabolism , Disease Models, Animal , Anti-Inflammatory Agents/pharmacology , Acute Disease , bcl-2-Associated X Protein/metabolism , Lipase/metabolism , Lipase/blood , Proto-Oncogene Proteins c-bcl-2/metabolism
6.
Eur J Pharmacol ; 972: 176569, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38593930

In our previous study, we uncovered that ghrelin promotes angiogenesis in human umbilical vein endothelial cells (HUVECs) in vitro by activating the Jagged1/Notch2/VEGF pathway in preeclampsia (PE). However, the regulatory effects of ghrelin on placental dysfunction in PE are unclear. Therefore, we applied Normal pregnant Sprague-Dawley (SD) rats, treated with lipopolysaccharide (LPS), to establish a PE-like rat model. The hematoxylin-eosin (HE) staining method and immunohistochemistry (IHC) technology were used to detect morphological features of the placenta. IHC and Western blot were applied to examine Bax and Bcl-2 expression levels. The concentrations of serum soluble fms-like tyrosine kinase-1 (sFlt1) and placental growth factor (PIGF) were assessed by enzyme-linked immunosorbent assay (ELISA) kit. In addition, the apoptosis rates of JEG-3 and HTR-8/SVneo trophoblast cells were determined by Annexin V-FITC/PI apoptosis detection kit. Cell migratory capacities were assessed by scratch-wound assay, and RNA-sequencing assay was used to determine the mechanism of ghrelin in regulating trophoblast apoptosis. It has been found that ghrelin significantly reduced blood pressure, urinary protein, and urine creatinine in rats with PE, at the meanwhile, ameliorated placental and fetal injuries. Second, ghrelin clearly inhibited placental Bax expression and circulating sFlt-1 as well as elevated placental Bcl-2 expression and circulating PIGF, restored apoptosis and invasion deficiency of trophoblast cells caused by LPS in vitro. Finally, transcriptomics indicated that nuclear factor kappa B (NF-κB) was the potential downstream pathway of ghrelin. Our findings illustrated that ghrelin supplementation significantly improved LPS-induced PE-like symptoms and adverse pregnancy outcomes in rats by alleviating placental apoptosis and promoting trophoblast migration.


Apoptosis , Disease Models, Animal , Ghrelin , Lipopolysaccharides , NF-kappa B , Placenta , Pre-Eclampsia , Rats, Sprague-Dawley , Animals , Ghrelin/pharmacology , Female , Pre-Eclampsia/drug therapy , Pre-Eclampsia/metabolism , Pregnancy , Placenta/metabolism , Placenta/drug effects , NF-kappa B/metabolism , Rats , Apoptosis/drug effects , Humans , Phosphorylation/drug effects , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-1/genetics , Down-Regulation/drug effects , Placenta Growth Factor/metabolism , Placenta Growth Factor/genetics , Trophoblasts/metabolism , Trophoblasts/drug effects , Cell Movement/drug effects , bcl-2-Associated X Protein/metabolism , Signal Transduction/drug effects
7.
Zhongguo Zhong Yao Za Zhi ; 49(3): 744-753, 2024 Feb.
Article Zh | MEDLINE | ID: mdl-38621878

This study observed the protective effect of resveratrol(Res) on ovarian function in poor ovarian response(POR) mice by regulating the Hippo signaling pathway and explored the potential mechanism of Res in inhibiting ovarian cell apoptosis. Female mice with regular estrous cycles were randomly divided into a blank group, a model group, and low-and high-dose Res groups(20 and 40 mg·kg~(-1)), with 20 mice in each group. The blank group received an equal volume of 0.9% saline solution by gavage, while the model group and Res groups received suspension of glycosides of Triptergium wilfordii(GTW) at 50 mg·kg~(-1) by gavage for two weeks to induce the model. After modeling, the low-and high-dose Res groups were continuously treated with drugs by gavage for two weeks, while the blank group and the model group received an equal volume of 0.9% saline solution by gavage. Ovulation was induced in all groups on the day following the end of treatment. Finally, 12 female mice were randomly selected from each group, and the remaining eight female mice were co-housed with male mice at a ratio of 1∶1. Changes in the estrous cycle of mice were observed using vaginal cytology smears. The number of ovulated eggs, ovarian wet weight, ovarian index, and pregnancy rate of mice were measured. The le-vels of anti-Mullerian hormone(AMH), follicle-stimulating hormone(FSH), estradiol(E_2), and luteinizing hormone(LH) in serum were determined using enzyme-linked immunosorbent assay(ELISA). Ovarian tissue morphology and ovarian cell apoptosis were observed using hematoxylin-eosin(HE) staining and terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL) staining, respectively. The protein expression levels of yes-associated protein(YAP) 1 and transcriptional coactivator with PDZ-binding motif(TAZ) were detected by immunohistochemistry(IHC), while the changes in protein expression levels of mammalian sterile 20-like kinase(MST) 1/2, large tumor suppressor(LATS) 1/2, YAP1, TAZ, B-cell lymphoma-2(Bcl-2), and Bcl-2 associated X protein(Bax) were determined by Western blot. The results showed that compared with the blank group, the model group had an increased rate of estrous cycle disruption in mice, a decreased number of normally developing ovarian follicles, an increased number of blocked ovarian follicles, increased ovarian granulosa cell apoptosis, decreased ovulation, reduced ovarian wet weight and ovarian index, increased serum FSH and LH levels, decreased AMH and E_2 levels, decreased protein expression levels of YAP1 and TAZ in ovarian tissues, increased relative expression levels of MST1/2, LATS1/2, and Bax proteins, and decreased relative expression levels of YAP1, TAZ, and Bcl-2 proteins. Additionally, the number of embryos per litter significantly decreased after co-housing. Compared with the model group, the low-and high-dose Res groups exhibited reduced estrous cycle disruption rates in mice, varying degrees of improvement in the number and morphology of ovarian follicles, reduced numbers of blocked ovarian follicles, improved ovarian granulosa cell apoptosis, increased ovulation, elevated ovarian wet weight and ovarian index, decreased serum FSH and LH levels, increased AMH and E_2 levels, elevated protein expression levels of YAP1 and TAZ in ovarian tissues, decreased relative expression levels of MST1/2, LATS1/2, and Bax proteins, and increased relative expression levels of YAP1, TAZ, and Bcl-2 proteins. Furthermore, the number of embryos per litter increased to varying degrees after co-housing. In conclusion, Res effectively inhibits ovarian cell apoptosis in mice and improves ovarian responsiveness. Its mechanism may be related to the regulation of key molecules in the Hippo pathway.


Hippo Signaling Pathway , Ovary , Pregnancy , Mice , Female , Male , Animals , bcl-2-Associated X Protein/metabolism , Resveratrol/pharmacology , Saline Solution/metabolism , Saline Solution/pharmacology , Follicle Stimulating Hormone/metabolism , Follicle Stimulating Hormone/pharmacology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Mammals/metabolism
8.
Int J Mol Sci ; 25(7)2024 Mar 30.
Article En | MEDLINE | ID: mdl-38612689

Intestinal epithelial cells (IECs) play crucial roles in forming an essential barrier, providing host defense against pathogens and regulating nutrients absorption. Milk-derived extracellular vesicles (EVs) within its miRNAs are capable of modulating the recipient cell function. However, the differences between colostrum and mature milk EVs and their biological function in attenuating intestinal epithelial cell injury remain poorly understood. Thus, we carried out the present study to characterize the difference between colostrum and mature milk-derived miRNA of EVs and the effect of colostrum and mature milk EVs on the proliferation, apoptosis, proinflammatory cytokines and intestinal epithelial barrier related genes in IEC-6 induced by LPS. Differential expression of 329 miRNAs was identified between colostrum and mature milk EVs, with 185 miRNAs being downregulated and 144 upregulated. In addition, colostrum contains a greater number and protein concentration of EVs than mature milk. Furthermore, compared to control, EVs derived from colostrum significantly inhibited the expression of apoptosis- (Bax, p53, and caspase-3) and proinflammatory-related genes (TNFα, IL6, and IL1ß). EVs derived from mature milk did not affect expression of apoptosis-related genes (Bax, p53, bcl2, and caspase-3). The EVs derived from mature milk significantly inhibited the expression of proinflammatory-related genes (TNFα and IL6). Western blot analysis also indicated that colostrum and mature milk EVs significantly decreased the apoptosis of IEC-6 cells. The EdU assay results showed that colostrum and mature milk EVs significantly increased the proliferation of IEC-6 cells. The expression of intestinal barrier-related genes (TJP1, CLDN1, OCLN, CDX2, MUC2, and IGF1R) was significantly promoted in IEC-6 cells after colostrum and mature milk EVs addition. Importantly, colostrum and mature milk EVs significantly relieved the LPS-induced inhibition of proliferation and intestinal barrier-related genes expression and attenuated apoptosis and proinflammatory responses induced by LPS in IEC-6 cells. Flow cytometry and Western blot analysis also indicated that colostrum and mature milk EVs significantly affect the apoptosis of IEC-6 cells induced by LPS. The results also indicated that EVs derived from colostrum had better effects on inhibiting the apoptosis- and proinflammatory cytokines-related genes expression. However, the EVs derived from mature milk exhibited beneficial effects on intestinal epithelial barrier protection. The present study will provide a better understanding of the role of EVs derived from colostrum and milk in dairy cows with different responses in the regulation of intestinal cells function, and also presents new evidence for the change of EVs cargos during various stages of lactation.


Extracellular Vesicles , Milk , Animals , Female , Pregnancy , Cattle , Colostrum , Lipopolysaccharides/pharmacology , Caspase 3 , Tumor Necrosis Factor-alpha , Interleukin-6 , Tumor Suppressor Protein p53 , bcl-2-Associated X Protein , Epithelial Cells
9.
Front Immunol ; 15: 1357072, 2024.
Article En | MEDLINE | ID: mdl-38638435

Introduction: Clostridium perfringens α toxin is a main virulence factor responsible for gut damage in animals. Arginine is a functional amino acid exhibiting significant immunoregulatory activities. However, the effects and immunoregulatory mechanisms of arginine supplementation on α toxin-induced intestinal injury remain unclear. Methods: In vivo, 256 male Arbor Acres chickens were randomly assigned to a 2×2 factorial arrangement, involving diet treatments (with or without 0.3% arginine supplementation) and immunological stress (with or without α toxin challenge). In vitro, IEC-6 cells were treated with or without arginine in the presence or absence of α toxin. Moreover, IEC-6 cells were transfected with siRNA targeting mTOR and SLC38A9 to explore the underlying mechanisms. Results and discussion: The results showed that in vivo, arginine supplementation significantly alleviated the α toxin-induced growth performance impairment, decreases in serum immunoglobulin (Ig)A and IgG levels, and intestinal morphology damage. Arginine supplementation also significantly reduced the α toxin-induced increase in jejunal proinflammatory cytokines interleukin (IL)-1ß, IL-6 and IL-17 mRNA expression. Clostridium perfringens α toxin significantly decreased jejunal mechanistic target of rapamycin (mTOR) and solute carrier family 38 member 9 (SLC38A9) mRNA expression, while arginine supplementation significantly increased mTOR and SLC38A9 mRNA expression. In vitro, arginine pretreatment mitigated the α toxin-induced decrease in cell viability and the increase in cytotoxicity and apoptosis. Arginine pretreatment also alleviated the α toxin-induced upregulation of mRNA expression of inflammation-related cytokines IL-6, C-X-C motif chemokine ligand (CXCL)10, CXCL11 and transforming growth factor-ß (TGF-ß), as well as apoptosis-related genes B-cell lymphoma-2 associated X protein (Bax), B-cell lymphoma-2 (Bcl-2), B-cell lymphoma-extra large (Bcl-XL) and cysteinyl aspartate specific proteinase 3 (Caspase-3) and the ratio of Bax to Bcl-2. Arginine pretreatment significantly increased the α toxin-induced decrease in mTOR, SLC38A9, eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4EBP1) and ribosomal protein S6 kinase (S6K) mRNA expression. Knockdown SLC38A9 and mTOR largely abrogated the positive effects of arginine pretreatment on α toxin-induced intracellular changes. Furthermore, SLC38A9 silencing abolished the increased mTOR mRNA expression caused by arginine pretreatment. In conclusion, arginine administration attenuated α toxin-induced intestinal injury in vivo and in vitro, which could be associated with the downregulation of inflammation via regulating SLC38A9/mTORC1 pathway.


Arginine , Bacterial Toxins , Calcium-Binding Proteins , Interleukin-6 , Type C Phospholipases , Animals , Male , Arginine/pharmacology , Bacterial Toxins/toxicity , bcl-2-Associated X Protein , Chickens/genetics , Inflammation , Mechanistic Target of Rapamycin Complex 1 , RNA, Messenger/genetics , TOR Serine-Threonine Kinases/metabolism , Amino Acid Transport Systems/metabolism
10.
Biotechnol J ; 19(4): e2300505, 2024 Apr.
Article En | MEDLINE | ID: mdl-38651269

Chinese hamster ovary (CHO) cells are the commonly used mammalian host system to manufacture recombinant proteins including monoclonal antibodies. However unfavorable non-human glycoprofile displayed on CHO-produced monoclonal antibodies have negative impacts on product quality, pharmacokinetics, and therapeutic efficiency. Glycoengineering such as genetic elimination of genes involved in glycosylation pathway in CHO cells is a viable solution but constrained due to longer timeline and laborious workflow. Here, in this proof-of-concept (PoC) study, we present a novel approach coined CellEDIT to engineer CHO cells by intranuclear delivery of the CRISPR components to single cells using the FluidFM technology. Co-injection of CRISPR system targeting BAX, DHFR, and FUT8 directly into the nucleus of single cells, enabled us to generate triple knockout CHO-K1 cell lines within a short time frame. The proposed technique assures the origin of monoclonality without the requirement of limiting dilution, cell sorting or positive selection. Furthermore, the approach is compatible to develop both single and multiple knockout clones (FUT8, BAX, and DHFR) in CHO cells. Further analyses on single and multiple knockout clones confirmed the targeted genetic disruption and altered protein expression. The knockout CHO-K1 clones showed the persistence of gene editing during the subsequent passages, compatible with serum free chemically defined media and showed equivalent transgene expression like parental clone.


CRISPR-Cas Systems , Cricetulus , Gene Editing , CHO Cells , Animals , CRISPR-Cas Systems/genetics , Gene Editing/methods , Antibodies, Monoclonal/genetics , Recombinant Proteins/genetics , Gene Knockout Techniques/methods , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Cricetinae , Genetic Engineering/methods
11.
Crit Rev Immunol ; 44(5): 51-58, 2024.
Article En | MEDLINE | ID: mdl-38618728

To explore the protective effect and mechanism of mild hypothermia on lung tissue damage after cardiopulmonary resuscitation in pigs. In this experiment, we electrically stimulated 16 pigs (30 ± 2 kg) for 10 min to cause ventricular fibrillation. The successfully resuscitated animals were randomly divided into two groups, a mild hypothermia group and a control group. We took arterial blood 0.5, 1, 3, and 6 h after ROSC recovery in the two groups of animals for blood gas analysis. We observed the structural changes of lung tissue under an electron microscope and calculate the wet weight/dry weight (W/D) ratio. We quantitatively analyzed the expression differences of representative inflammatory factors [interleukin-6 (IL-6) and tumor necrosis factor-alpha TNF-α)] through the ELISA test. We detected the expression levels of Bax, Bcl-2, and Caspase-3 proteins in lung tissues by Western blot. After 3 h and 6 h of spontaneous circulation was restored, compared with the control group, PaO2/FiO2 decreased significantly (P < 0.05). In addition, the pathological changes, lung W/D and lung MDA of the mild hypothermia group were better than those of the control group. The levels of IL-6 and TNF-α in the lung tissue of the mild hypothermia group were significantly lower than those of the control group (P < 0.05). The content of Caspase-3 and Bax in the mild hypothermia group was significantly lower than that of the control group. Our experiments have shown that mild hypothermia can reduce lung tissue damage after cardiopulmonary resuscitation.


Cardiopulmonary Resuscitation , Hypothermia , Lung Injury , Humans , Animals , Swine , Lung Injury/etiology , Caspase 3 , Interleukin-6 , Tumor Necrosis Factor-alpha , bcl-2-Associated X Protein
12.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 409-415, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38660844

OBJECTIVE: To study the effect of arctigenin(ARG) on adriamycin(ADM) resistance of leukemia cell line K562/A02 and the underlying mechanism. METHODS: Human leukemia cell line K562 and ADM-resistant cell line K562/A02 were cultured and treated with 2.5-50 µmol/L ADM. Cell proliferation was measured using CCK-8 method, and half maximal inhibitory concentration (IC50) was calculated. K562/A02 cells were treated with different concentrations of ARG (1, 2, 4, 8, 16 mmol/L) to detect the effect of ARG on K562/A02 cells, and a suitable concentration (2 mmol/L) was selected for subsequent experiments. K562/A02 cells were treated with 2 mmol/L ARG and 5 µmol/L ADM, and cell apoptosis was detected by flow cytometry, the expression of P-gp, MRP, cleaved caspase-3, Bax, Bcl-2 proteins and the TLR4/NF-κB signaling pathway-related proteins were measured by Western blot. TLR4 overexpression plasmid was transfected into K562/A02 cells which were co-treated with ARG and ADM, then drug sensitivity and cell apoptosis were measured. RESULTS: The IC50 value of ADM on K562/A02 cells was 36.57 µmol/L, which was significantly higher than that on K562 cells (1.30 µmol/L). ARG with a concentration of ≤2 mmol/L did not have a significant effect on K562/A02 cells. 2 mmol/L ARG significantly reduced the IC50 of ADM on K562/A02 cells. In 5 µmol/L ADM-treated K562/A02 cells, compared with the control group, the apoptosis rate of K562/A02 cells in the ARG group was significantly increased, the expressions of cleaved caspase-3, Bax proteins were significantly upregulated, the expressions of P-gp, MRP, Bcl-2, TLR4, MyD88, and p-NF-κB proteins were significantly downregulated, and the differences were statistically significant (P < 0.05). After transfection with TLR4 overexpression plasmid, the sensitivity of ARG-treated K562/A02 cells to ADM was reduced (P < 0.05), the cell apoptosis was decreased, and the expressions of P-gp, MRP, Bcl-2 and TLR4/NF-κB signaling pathway-related proteins were significantly elevated, while the expressions of cleaved caspase-3 and Bax proteins were significantly decreased (all P < 0.05). CONCLUSION: ARG may reverse the resistance of human leukemia cell line K562/A02 to ADM by inhibiting TLR4/NF-κB signaling pathway.


Apoptosis , Cell Proliferation , Doxorubicin , Drug Resistance, Neoplasm , Furans , Lignans , Humans , Lignans/pharmacology , K562 Cells , Apoptosis/drug effects , Doxorubicin/pharmacology , Furans/pharmacology , Cell Proliferation/drug effects , NF-kappa B/metabolism , Signal Transduction , Caspase 3/metabolism , Toll-Like Receptor 4/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Leukemia , bcl-2-Associated X Protein/metabolism , Cell Line, Tumor
13.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 416-421, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38660845

OBJECTIVE: To explore the effect of shikonin on autophagy and apoptosis of human promyelocytic leukemia cells and its possible mechanism. METHODS: Human promyelocytic leukemia cells NB4 in the logarithmic growth phase were divided into control group (untreated NB4 cells), shikonin group (0.3 µmol/L shikonin treatment), 740Y-P group (15 µmol/L PI3K/Akt/mTOR pathway activator 740Y-P treatment), shikonin+740Y-P group (0.3 µmol/L shikonin and 15 µmol/L 740Y-P co-treatment), after 24 hours of treatment, the cells were used for subsequent experiments. CCK-8 method was used to detect cell viability, monodansylcadaverine (MDC) staining to detect the aggregation of autophagic vesicles, flow cytometry to detect cell apoptosis, and Western blot to detect the expression of Beclin1, LC3, p62, Bax, cleaved caspase-3, Bcl-2 and PI3K/Akt/mTOR pathway related proteins. RESULTS: Compared with the control group, the purple punctate fluorescence intensity, apoptosis rate, Beclin1, LC3-Ⅱ/LC3-Ⅰ, cleaved caspase-3, and Bax protein expression in NB4 cells were increased in the shikonin group, while OD450 value (24, 48 h) and the expressions of Bcl-2 and p62 proteins were decreased (all P < 0.05). Compared with the control group, the purple punctate fluorescence intensity, apoptosis rate, Beclin1, LC3-Ⅱ/LC3-Ⅰ, cleaved caspase-3, and Bax protein expression in NB4 cells were decreased, while OD450 value (24, 48 h) and the expressions of Bcl-2 and p62 proteins were increased in the 740Y-P group (all P < 0.05). Compared with the shikonin group, the purple punctate fluorescence intensity, apoptosis rate, Beclin1, LC3-Ⅱ/LC3-Ⅰ, cleaved caspase-3, and Bax protein expression in NB4 cells were decreased, while OD450 value (24, 48 h) and the expressions of Bcl-2 and p62 proteins were increased in the shikonin+740Y-P group (all P < 0.05). Compared with the control group, the expression of PI3K/Akt/mTOR pathway related proteins p-PI3K, p-Akt, and p-mTOR in NB4 cells were significantly decreased in the shikonin group, while those in the 740Y-P group were increased (all P < 0.05). Compared with the shikonin group, the expressions of p-PI3K, p-Akt, and p-mTOR proteins in NB4 cells were significantly increased in the shikonin+740Y-P group (all P < 0.05). CONCLUSION: Shikonin may promote autophagy and apoptosis of NB4 cells by inhibiting PI3K/Akt/mTOR pathway.


Apoptosis , Autophagy , Leukemia, Promyelocytic, Acute , Naphthoquinones , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases , Humans , Autophagy/drug effects , Apoptosis/drug effects , Naphthoquinones/pharmacology , Cell Line, Tumor , Leukemia, Promyelocytic, Acute/pathology , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction , Cell Survival/drug effects , Caspase 3/metabolism , bcl-2-Associated X Protein/metabolism , Beclin-1/metabolism
14.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 507-514, 2024 Mar 20.
Article Zh | MEDLINE | ID: mdl-38597442

OBJECTIVE: To investigate the protective effects of HTD4010 against lipopolysaccharide (LPS)-induced septic cardiomyopathy (SCM) in mice and explore the mechanisms mediating its effect. METHODS: Forty-five male ICR mice were randomized equally into control group, LPS (10 mg/kg) group, and LPS+HTD4010 group (in which 2.5 mg/kg HTD4010 was injected subcutaneously at 1 h and 6 h after LPS injection). Cardiac function of the mice was evaluated by ultrasound, and pathological changes in the myocardial tissues were observed with HE staining. The levels of IL-6 and TNF-α in serum and myocardial tissues were detected using ELISA, and apoptosis of the cardiomyocytes was detected with TUNEL staining. The expression levels of the key proteins associated with apoptosis, autophagy and the AMPK/mTOR pathway in the myocardial tissues were detected using Western blotting. The ultrastructural changes of cardiac myocardial mitochondria was observed with transmission electron microscopy. RESULTS: LPS exposure caused severe myocardial damage in mice, characterized by myocardial fiber rupture, structural disorder, inflammatory cell infiltration, and mitochondrial damage. The LPS-treated mice exhibited significantly decreased cardiac LVEF and FS values, elevated IL-6 and TNF-αlevels in serum and myocardial tissue, and an increased myocardial cell apoptosis rate with enhanced expressions of Bax, p-62 and p-mTOR and lowered expressions of Bcl-2, LC3 II/I, Beclin-1 and p-AMPK (P < 0.05 or 0.01). Treatment of the septic mice with HTD4010 significantly alleviated myocardial damage, increased LVEF and FS values, reduced IL-6 and TNF-α levels in serum and myocardial tissue, decreased cardiomyocyte apoptosis, lowered myocardial expressions of Bax, p-62 and p-mTOR, and increased Bcl-2, LC3 II/I, Beclin-1 and p-AMPK expressions (P < 0.05 or 0.01). CONCLUSION: HTD4010 can attenuate myocardial injury in SCM mice possibly by promoting autophagy via modulating the AMPK/mTOR signaling pathway.


Cardiomyopathies , Heart Injuries , Mice , Male , Animals , AMP-Activated Protein Kinases/metabolism , Tumor Necrosis Factor-alpha/metabolism , Beclin-1/metabolism , Lipopolysaccharides/adverse effects , Interleukin-6/metabolism , bcl-2-Associated X Protein/metabolism , Mice, Inbred ICR , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Myocytes, Cardiac , Heart Injuries/metabolism , Apoptosis , Autophagy
15.
Cell Death Dis ; 15(4): 266, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622118

BH3-mimetics represent promising anti-cancer agents in tumors that rely on the anti-apoptotic function of B-Cell Lymphoma 2 (BCL2) proteins, particularly in leukemia and lymphoma cells primed for apoptosis. Mechanistically, BH3-mimetics may displace pro-apoptotic binding partners thus inducing BAX/BAK-mediated mitochondrial permeabilization followed by cytochrome c release, activation of the caspase cascade and apoptosis. Here, we describe a novel mode of caspase-independent cell death (CICD) induced by BH3-mimetics in a subset of diffuse large B-cell lymphoma (DLBCL) cells. Of note, rather than occurring via necroptosis, CICD induced immediately after mitochondrial permeabilization was associated with transcriptional reprogramming mediated by activation of c-Jun N-terminal Kinase (JNK) signaling and Activator Protein 1 (AP1). Thereby, CICD resulted in the JNK/AP1-mediated upregulation of inflammatory chemokines and increased migration of cytotoxic Natural Killer (NK) cells. Taken together, our study describes a novel mode of CICD triggered by BH3-mimetics that may alter the immune response towards dying cells.


Antineoplastic Agents , Lymphoma, Large B-Cell, Diffuse , Humans , bcl-2-Associated X Protein/metabolism , bcl-2 Homologous Antagonist-Killer Protein/metabolism , Apoptosis , Antineoplastic Agents/pharmacology , Caspases , Lymphoma, Large B-Cell, Diffuse/drug therapy , Cell Line , Proto-Oncogene Proteins c-bcl-2/metabolism
16.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1007-1016, 2024 Feb.
Article Zh | MEDLINE | ID: mdl-38621908

Chondrocytes are unique resident cells in the articular cartilage, and the pathological changes of them can lead to the occurrence of osteoarthritis(OA). Ligusticum cycloprolactam(LIGc) are derivatives of Z-ligustilide(LIG), a pharmacodynamic marker of Angelica sinensis, which has various biological functions such as anti-inflammation and inhibition of cell apoptosis. However, its protective effect on chondrocytes in the case of OA and the underlying mechanism remain unclear. This study conducted in vitro experiments to explore the molecular mechanism of LIGc in protecting chondrocytes from OA. The inflammation model of rat OA chondrocyte model was established by using interleukin-1ß(IL-1ß) to induce. LIGc alone and combined with glycyrrhizic acid(GA), a blocker of the high mobility group box-1 protein(HMGB1)/Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB) signaling pathway, were used to intervene in the model, and the therapeutic effects were systematically evaluated. The viability of chondrocytes treated with different concentrations of LIGc was measured by the cell counting kit-8(CCK-8), and the optimal LIGc concentration was screened out. Annexin V-FITC/PI apoptosis detection kit was employed to examine the apoptosis of chondrocytes in each group. The enzyme-linked immunosorbent assay(ELISA) was employed to measure the expression of cyclooxygenase-2(COX-2), prostaglandin-2(PGE2), and tumor necrosis factor-alpha(TNF-α) in the supernatant of chondrocytes in each group. Western blot was employed to determine the protein levels of B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), caspase-3, HMGB1, TLR4, and NF-κB p65. The mRNA levels of HMGB1, TLR4, NF-κB p65, and myeloid differentiation factor 88(MyD88) in chondrocytes were determined by real-time fluorescent quantitative PCR(RT-qPCR). The safe concentration range of LIGc on chondrocytes was determined by CCK-8, and then the optimal concentration of LIGc for exerting the effect was clarified. Under the intervention of IL-1ß, the rat chondrocyte model of OA was successfully established. The modeled chondrocytes showed increased apoptosis rate, promoted expression of COX-2, PGE2, and TNF-α, up-regulated protein levels of Bax, caspase-3, HMGB1, TLR4, and NF-κB p65 and mRNA levels of HMGB1, TLR4, NF-κB p65, and MyD88, and down-regulated protein level of Bcl-2. However, LIGc reversed the IL-1ß-induced changes of the above factors. Moreover, LIGc combined with GA showed more significant reversal effect than LIGc alone. These fin-dings indicate that LIGc extracted and derived from the traditional Chinese medicine A. sinensis can inhibit the inflammatory response of chondrocytes and reduce the apoptosis of chondrocytes, and this effect may be related to the HMGB1/TLR4/NF-κB signaling pathway. The pharmacological effect of LIGc on protecting chondrocytes has potential value in delaying the progression of OA and improving the clinical symptoms of patients, and deserves further study.


HMGB1 Protein , Ligusticum , Osteoarthritis , Humans , Rats , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Chondrocytes , Caspase 3/metabolism , bcl-2-Associated X Protein/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , HMGB1 Protein/pharmacology , Dinoprostone , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism , Signal Transduction , Inflammation/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/genetics , Apoptosis , RNA, Messenger/metabolism
17.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1073-1081, 2024 Feb.
Article Zh | MEDLINE | ID: mdl-38621914

The present study aimed to investigate the effect and mechanism of Bupleuri Radix-Paeoniae Radix Alba medicated plasma on HepG2 hepatoma cells by regulating the microRNA-1297(miR-1297)/phosphatase and tensin homologue deleted on chromosome 10(PTEN) signaling axis. Real-time quantitative PCR(RT-qPCR) was carried out to determine the mRNA levels of miR-1297 and PTEN in different hepatoma cell lines. The dual luciferase reporter assay was employed to verify the targeted interaction between miR-1297 and PTEN. The cell counting kit-8(CCK-8) was used to detect cell proliferation, and the optimal concentration and intervention time of the medicated plasma were determined. The cell invasion and migration were examined by Transwell assay and wound healing assay. Cell cycle distribution was detected by PI staining, and the apoptosis of cells was detected by Annexin V-FITC/PI double staining. The mRNA levels of miR-1297, PTEN, protein kinase B(Akt), and phosphatidylinositol 3-kinase(PI3K) were determined by RT-qPCR. Western blot was employed to determine the protein levels of PTEN, Akt, p-Akt, caspase-3, caspase-9, B-cell lymphoma-2(Bcl-2), and Bcl-2-associated X protein(Bax). The results showed that HepG2 cells were the best cell line for subsequent experiments. The dual luciferase reporter assay confirmed that miR-1297 could bind to the 3'-untranslated region(3'UTR) in the mRNA of PTEN. The medicated plasma inhibited the proliferation of HepG2 cells, and the optimal intervention concentration and time were 20% and 72 h. Compared with the blank plasma, the Bupleuri Radix-Paeoniae Radix Alba medicated plasma, miR-1297 inhibitor, miR-1297 inhibitor + medicated plasma all inhibited the proliferation, invasion, and migration of HepG2 cells, increased the proportion of cells in the G_0/G_1 phase, decreased the proportion of cells in the S phase, and increased the apoptosis rate. The medicated plasma down-regulated the mRNA levels of miR-1297, PI3K, and Akt and up-regulated the mRNA level of PTEN. In addition, it up-regulated the protein levels of PTEN, Bax, caspase-3, and caspsae-9 and down-regulated the protein levels of p-Akt, p-PI3K, and Bcl-2. In conclusion, Bupleuri Radix-Paeoniae Radix Alba medicated plasma can inhibit the expression of miR-1297 in HepG2 hepatoma cells, promote the expression of PTEN, and negatively regulate PI3K/Akt signaling pathway, thereby inhibiting the proliferation and inducing the apoptosis of HepG2 cells.


Carcinoma, Hepatocellular , Drugs, Chinese Herbal , Liver Neoplasms , MicroRNAs , Paeonia , Plant Extracts , Humans , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Hep G2 Cells , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Caspase 3/metabolism , bcl-2-Associated X Protein , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Apoptosis , Cell Proliferation , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , RNA, Messenger , Luciferases/metabolism , Luciferases/pharmacology , Cell Line, Tumor
18.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1082-1090, 2024 Feb.
Article Zh | MEDLINE | ID: mdl-38621915

This study aims to investigate the impact of Kuntai Capsules(KTC) on polycystic ovarian syndrome(PCOS) rat models and explore the underlying mechanism. Fifty female SD rats were randomly divided into five groups(10 rats in each group), including control group, model group, low-, medium-, and high-dose KTC group. Except for the control group, the other groups were injected with dehydroepiandrosterone(DHEA) combined with a high-fat diet(HFD) to induce the PCOS rat model for 28 days. 0.315, 0.63, and 1.26 g·kg~(-1)·d~(-1) KTC was dissolved in the same amount of normal saline and given to low-, medium-, and high-dose KTC groups by gavage. Both control group and model group were given the same amount of normal saline for 15 days. After administration, fasting blood glucose(FBG) was measured by a glucose meter. Fasting insulin(FINS), luteinizing hormone(LH), testosterone(T), and follicle-stimulating hormone(FSH) were detected by enzyme-linked immunosorbent assay(ELISA), and LH/FSH ratio and insulin resistance index(HOMA-IR) were calculated. The pathological morphology of ovarian tissue was observed by hematoxylin-eosin(HE) staining. The expression levels of collagen α type Ⅲ 1 chain(COL3A1), apoptotic factors Bax, and Bcl-2 were detected using Western blot and immunofluorescence. The mRNA expressions of COL3A1, Bax, and Bcl-2 in ovarian tissue were performed by real-time PCR(RT-PCR). The results show that compared with the control group, the body weight, serum levels of FBG, FINS, LH, T, LH/FSH, and HOMA-IR are higher in model group(P<0.05 or P<0.01), and the level of FSH is lower(P<0.05). In model group, a large number of white blood cells are found in the vaginal exfoliated cells, mainly in the interictal phase. There are more cystic prominences on the surface of the ovary. The thickness of the granular cell layer is reduced, and oocytes are absent. COL3A1 and Bax protein expression levels are increased(P<0.01), while Bcl-2 protein expression levels are decreased(P<0.05) in the ovarian tissue COL3A1 and Bax mRNA expression levels are increased in ovarian tissue(P<0.05). Compared with the model group, the body weight, FBG, FINS, LH, T, LH/FSH, and HOMA-IR in low-, medium-, and high-dose KTC groups are decreased(P<0.05 or P<0.01), while the levels of FSH in medium-, and high-dose KTC groups are increased(P<0.05 or P<0.01). Low-, medium-, and high-dose KTC groups gradually show a stable interictal phase. The surface of the ovary is smooth. Oocytes and mature follicles can be seen in ovarian tissue, and the thickness of the granular cell layer is increased. The expression level of COL3A1 protein decreases in low-and medium-dose KTC groups(P<0.05 or P<0.01), and that of Bax protein decreases in low-dose KTC group(P<0.05 or P<0.01), and the expression level of Bcl-2 protein increases in low-dose KTC group(P<0.01). The expression levels of COL3A1 and Bax mRNA decreased in the low-dose KTC group(P<0.05), while the expression levels of Bcl-2 mRNA increased(P<0.05). In summary, KTC can inhibit ovarian granulosa cell apoptosis and reduce follicular atresia by regulating the AGE-RAGE signaling pathway. It can promote insulin secretion, reduce blood sugar and body weight, restore serum hormone levels, improve symptoms of PCOS, alleviate morphological damage of the ovary, and restore ovarian function, which is of great value in the treatment of PCOS.


Polycystic Ovary Syndrome , Humans , Rats , Female , Animals , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/genetics , bcl-2-Associated X Protein , Saline Solution , Rats, Sprague-Dawley , Follicular Atresia , Signal Transduction , Body Weight , Follicle Stimulating Hormone , RNA, Messenger
19.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1611-1620, 2024 Mar.
Article Zh | MEDLINE | ID: mdl-38621946

This study investigated the protective effect of tanshinone Ⅱ_A(TSⅡ_A) on the liver in the rat model of non-alcoholic fatty liver disease(NAFLD) and the mechanism of TSⅡ_A in regulating ferroptosis via the nuclear factor E2-related factor 2(Nrf2) signaling pathway. The rat model of NAFLD was established with a high-fat diet for 12 weeks. The successfully modeled rats were assigned into model group, low-and high-dose TSⅡ_A groups, and inhibitor group, and normal control group was set. Enzyme-linked immunosorbent assay was employed to determine the content of superoxide dismutase(SOD) and malondialdehyde(MDA) in the serum of rats in each group. A biochemical analyzer was used to measure the content of aspartate aminotransferase(AST), alaninl aminotransferase(ALT), total cholesterol(TC), and triglycerides(TG). Hematoxylin-eosin(HE) staining was used to detect pathological damage in liver tissue. Terminal-deoxynucleoitidyl transferase-mediated nick end labeling(TUNEL) was employed to examine the apoptosis of the liver tissue. Oil red O staining, MitoSOX staining, and Prussian blue staining were conducted to reveal lipid deposition, the content of reactive oxygen species(ROS), and iron deposition in liver tissue. Western blot was employed to determine the expression of Nrf2, heme oxygenase-1(HO-1), glutathione peroxidase 4(GPX4), ferroptosis suppressor protein 1(FSP1), B cell lymphoma-2(Bcl-2), and Bcl-2 associated X protein(Bax) in the liver tissue. The result showed that TSⅡ_A significantly reduced the content of MDA, AST, ALT, TC, and TG in the serum, increased the activity of SOD, decreased the apoptosis rate, lipid deposition, ROS, and iron deposition in the liver tissue, up-regulated the expression of Nrf2, HO-1, FSP1, GPX, and Bcl-2, and inhibited the expression of Bax in the liver tissue of NAFLD rats. However, ML385 partially reversed the protective effect of TSⅡ_A on the liver tissue. In conclusion, TSⅡ_A could inhibit ferroptosis in the hepatocytes and decrease the ROS and lipid accumulation in the liver tissue of NAFLD rats by activating the Nrf2 signaling pathway.


Abietanes , Ferroptosis , Non-alcoholic Fatty Liver Disease , Rats , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , bcl-2-Associated X Protein/metabolism , Reactive Oxygen Species/metabolism , Liver , Signal Transduction , Triglycerides/metabolism , Superoxide Dismutase/metabolism , Iron/metabolism
20.
Mol Biol Rep ; 51(1): 518, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622261

BACKGROUND: Cold atmospheric plasma (CAP) has been widely used in biomedical research, especially in vitro cancer therapy. Cutaneous squamous cell carcinoma (CSCC) is a malignant tumor originating from epidermal keratinocytes. However, the mechanism of CAP therapy on CSCC remains unclear. METHODS AND RESULTS: The animal models of CSCC induced by 7,12-dimethylbenz(a) anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) were constructed. For the CAP treatment group, after each TPA application, CAP was administered for 3 min twice weekly after drying. HE staining were used to detect the pathological status of tumor tissue in each group. The levels of PCNA, Bcl-2, Bax, MMP2 and MMP9 were evaluated by western blot and qPCR. TUNEL staining were used to detect apoptosis in tumor tissues. In vivo, serum samples were used for ELISA of total ROS. MTT assay was used to detect the viability of A431 cells. Western blot and qPCR were used to detect the levels of PCNA, Bcl-2, Bax, MMP2 and MMP9 in A431 cells. A431 cell proliferation was examined by colony formation assay. The proportions of apoptosis of A431 cells were detected by flow cytometry. Transwell assessed the ability of A431 cells migration and proliferation. We found that CAP could induce skin cancer cells apoptosis and inhibit the progress of skin cancer. Through experiments in vitro, reactive oxygen species (ROS) generated by N-acetylcysteine (NAC) and CAP inhibited the proliferation and migration of A431 skin cancer cells while promoting apoptosis. CONCLUSIONS: These evidences suggest the protective effect of CAP in CSCC, and CAP has the potential clinical application of CSCC.


Carcinoma, Squamous Cell , Plasma Gases , Skin Neoplasms , Animals , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Reactive Oxygen Species/pharmacology , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , Plasma Gases/pharmacology , Proliferating Cell Nuclear Antigen/genetics , bcl-2-Associated X Protein , Apoptosis , Cell Line, Tumor , Cell Proliferation
...